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Abstract— Long-term monitoring of numerous dynamic tar-
gets can be tedious for a human operator and infeasible for
a single robot, e.g., to monitor wild flocks, detect intruders,
search and rescue. Fleets of autonomous robots can be effective
by acting collaboratively and concurrently. However, the online
coordination is challenging due to the unknown behaviors of
the targets and the limited perception of each robot. Existing
work often deploys all robots available without minimizing the
fleet size, or neglects the constraints on their resources such as
battery and memory. This work proposes an online coordination
scheme called LOMORO for collaborative target monitoring,
path routing and resource charging. It includes three core
components: (I) the modeling of multi-robot task assignment
problem under the constraints on resources and monitoring
intervals; (II) the resource-aware task coordination algorithm
iterates between the high-level assignment of dynamic targets
and the low-level multi-objective routing via the Martin’s
algorithm; (III) the online adaptation algorithm in case of
unpredictable target behaviors and robot failures. It ensures
the explicitly upper-bounded monitoring intervals for all targets
and the lower-bounded resource levels for all robots, while
minimizing the average number of active robots. The proposed
methods are validated extensively via large-scale simulations
against several baselines, under different road networks, robot
velocities, charging rates and monitoring intervals.

I. INTRODUCTION

Mobile robots such as unmanned aerial vehicles (UAVs)
and unmanned ground vehicles (UGVs) are becoming more
capable of autonomous inspection and navigation. Via wire-
less communication and collaboration, a fleet of such robots
can be deployed to monitor large areas that are otherwise too
demanding for human operators, e.g., to explore unknown
territory [1], and track moving targets [2], [3]. Particularly,
active monitoring of unknown dynamic targets has attracted
significant attention, see [4], [S5], [6], [7]. It incorporates
several challenging aspects of multi-robot coordination: (I)
the behavior of each target regarding its velocity and future
path is uncertain, meaning that the assignment of targets to
robots should be adaptive; (II) to ensure the accuracy of
monitoring, a minimum monitoring interval for each target
is required. Moreover, for long-term (possibly indefinite)
mission, it is inevitable that the robots are subject to resource
constraints such as battery and memory. In this case, the
planning of monitoring tasks and charging activities are
heavily dependent and should be planned as a whole. Ex-
isting methods [2], [3], [4], [8], [9], [10], [11], [12] mostly
consider the short-term monitoring task of one or several
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Fig. 1. Tllustration of the considered scenario. Top-Left and Top-Right:
3—4 UAVs are actively monitoring 10 targets (in red) within a road network,
with their static (t=12s) and online (t=381 s) plans. Middle Left: Batteries
of 6 robots during the online execution of 400s. Bottom-Left: Intervals
from the last monitoring of 10 targets. Middle-Right: Average number
of active robots, the time when replans take place, and their computation
time. Bottom-Right: The robots responsible for each target during any
consecutive replans. Each target has 2 rows, with the lower representing
the target node and the upper the intersection target node respectively.
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targets with known behaviors, via a fixed fleet size of robots
without resource constraints. It remains an open problem
to coordinate online the minimum fleet of robots, under
the strict constraints of minimum monitoring intervals over
targets and the minimum resources over robots.

A. Related Work

1) Active Information Acquisition: Active information ac-
quisition for sensing robots, originating in [4], [9], focuses on
optimizing robot motion to maximize information gain. Early
approaches employ offline search algorithms that explore the
joint state-information space through forward value iteration
and its reduced variant, leveraging separation principles
under linear observation models. These principles have been
extended to multi-robot systems: centralized, non-myopic
solutions using sampling-based methods are proposed in [3],
[8], while decentralized, myopic strategies are investigated
in [5], [6], [7], [13]. Learning-based techniques, such as
those in [2], train distributed policies to mimic optimal
planners. However, existing methods predominantly assume
fixed robot team sizes and targets with known dynamics
or control inputs. A key unresolved challenge lies in dy-
namically adjusting the robot team size to monitor targets



exhibiting unknown behaviors, including velocities and road
network navigation paths.

2) Multi-robot Task Assignment: In contrast, multi-target
monitoring has also been framed as a sequential high-
level assignment problem, with robots assigned to targets
to minimize uncertainty. While [14] introduces a distributed
Hungarian method, its scope is restricted to one-to-one as-
signments. Several works, including [10], [11], [12], rephrase
this as a simultaneous action and target assignment prob-
lem, proposing distributed approximation algorithms such as
linear programs. These methods, however, typically assume
known target trajectories and rely on synchronized robot mo-
tions with predefined primitives. The complementary work
of [15] maximizes the number of tracked targets using a fixed
robot team via a 2-approximation greedy approach. Recent
studies like [16], [17] investigate robust assignments against
communication or sensing attacks but retain assumptions
of synchronized motions with finite primitives. Departing
from these frameworks, this work determines online the
flexible assignment of robots to targets according to actual
observations that can not be determined offline.

3) Planning under Resource Constraints: Recent ad-
vances in robot motion and task planning under resource
constraints emphasize optimization-based frameworks that
balance computational efficiency with energy and mem-
ory limitations. State-of-the-art approaches integrate multi-
objective optimization to handle battery constraints, often
leveraging dynamic programming [18] or model predictive
control [19] to allocate energy budgets while ensuring task
completion. Memory-aware planning algorithms [20] or hier-
archical task decomposition [21], reduce computational over-
head by pruning redundant states or compressing environ-
ment representations. For distributed systems, decentralized
strategies in [22] use reinforcement learning to optimize
local decisions under shared resource limits. Hybrid methods
combining offline pre-planning with online adaptation, such
as the anytime algorithms in [23], dynamically adjust plans
based on real-time resource consumption. Despite progress,
challenges persist in scaling these methods to highly dynamic
large-scale environments and flexible fleet size.

B. Our Method

This work addresses the long-term monitoring task of
numerous dynamic targets within a road network via a fleet
of aerial robots, where each target has a strict (potentially
different) monitoring interval. More importantly, the robots
have limited resources (such as battery and memory) that
are consumed over time and should be recharged often. The
targets follow a constant-velocity model, but with unknown
velocity on each road, and unknown path within the road
network. The proposed method consists of three components:
(D an search-based assignment algorithm is designed that
searches through a partial sequence of robots, in which the
subset of targets are assigned in an incremental way. It ranks
the feasible assignments based on a multi-objective measure;
(II) a maximum-allowed Martin’s algorithm (MAM) is pro-
posed to determine simultaneously the optimal subset and

sequence of targets to monitor, and the optimal charging
station to charge, via an efficient incremental label-setting
procedure. (IIT) an online adaptation scheme is proposed to
monitor the feasibility of the local plan of each vehicle on-
line. In case of violation of the above constraints, it triggers
the first component to find first an alternative assignment that
is feasible (by recruiting additional robots if needed), then
improves the quality as more planing time is permitted. It
is proven that the constraints of resources and monitoring
intervals are fulfilled at all time, while the average number
of robots that actively monitors the targets is minimized.
Extensions such as free membership of targets and charging
stations that are dynamically moving are also demonstrated.
Extensive simulations are performed over large-scale fleets
and targets over complex scenes.

Main contribution of this work is three-fold: (I) the novel
formulation of the minimum-fleet monitoring problem of
unknown dynamic targets within road networks, under strict
constraints of monitoring interval and resources; (II) the
hierarchical solution that adapts the fleet size and vehicle
trajectories online, according to real-time observations of the
target behavior; (III) the scalable solution that allows the
deployment of a few UAVs to monitor a large number of
dynamic targets.

II. PROBLEM DESCRIPTION
A. System Description

Consider a workspace YW < R? within which the robots
and targets coexist. We define the environment as P =
(R,S), where R = W denotes the road network and
S =1{1,2,---,5} denotes the set of charging stations. The
road network is defined as R = (V, ), where V < W is the
set of intersections and £ < V x V is a set of straight roads
connecting these hubs. For each charging station s € S, its
position is z, € W and the charging capacity per unit time is
Bs > 0. Moreover, there is a fleet of robots A = {1,--- , N},
which is divided into two sets, i.e., N' = Nu(t) U N:i(t),
where N (t) denotes the active robots and N7 (t) denotes
the inactive robots. The state of each robot n € N is
given by its position x,(t) € W, velocity v,,(t) € R? and
battery by, (t) > 0. Its rate of battery consumption is defined
as Y, (t) = Y(||[va(®)]]),t = 0, where v : R — R is a
monotonically increasing function, and || - || denotes the Lo
norm. The maximum velocity is v;** > 0 and the battery
capacity is b)™ > 0. We define the control space of the
robots as U, and the robot follows the nonlinear dynamics:

[, (t+ 1), v (t + D)7 = f(x,(t), v (t), un(t)), (1)

where f(-) is the dynamic model and u,(t) € U is the
control input of the robot n at time ¢ > 0. In addition, the
sensor range of robot n is R,, > 0, within which it can make
observations and detect targets.

Given the set of targets M = {1,--- | M}, each target m €
M moves on roads in R, following the constant-velocity
model [4] but with different velocities v,,, € R?. We assume
that both the number of targets M and their initial states
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Tlustration of the proposed framework, which consists of three parts: Search-based optimization for robot ordering, multi-robot maximum-allowed

Martin’s algorithm (MAM) and online execution. The MAM consists of the time-varying node network (TVNN) and the incremental Martin’s algorithm
(IMA). The IMA mainly consists of incremental sub-TVNN and the Martin’s Process.

are known. Namely, the target may randomly switch to a
different road at each hub point e € £.

B. Local Plans and Constraints

Each robot n € N,(t) has a local plan 7,, which is a
sequence of targets and charging stations assigned to n. For
each robot n € N, (t), we define a,,(¢) as its action sequence,
where a,(t) € {aw(v), ame(m), a(s)},v € MU S,m €
M,s € S,v,m,s € Ty, and T4(-) is the duration of the
action. If a,,(t) = ay(v), robot n is during navigation to a
target or at a charging station. If a,,(t) = ame(m), robot n
is monitoring target m, which satisfies:

d(ym (t>7 Xn(t)) < Ry, Td(amo(m)) = Ty, 2

where d(-) is the distance function, and T} is the required
minimum interval. If a,,(t) = acn(s), robot n charges at
charging station s, where the battery should satisfy the
constraint:

0 < bu(t) < B™ ¥ne N, V¢ >0, 3)

which holds for all robots. Moreover, let 7" = M n T,.
There is a maximum number of targets any robot n can
track simultaneously, due to limited computation time, i.e.,
|7 < C,,. The monitoring interval is fixed as x,, for each
target m € M. The time from the last monitoring to the
current time is denoted by x.,(t) that:

0 < xm(t) < Xom, VM € M, Vi = 0, %)

where xm(t) is set to zero if m is monitored, i.e., if there
exists n € Nx(t), such that a,(t) = amo(m), xm(t) is set
to zero. More importantly, each target should be monitored
at intersections, i.e., if there exists ¢, such that " (¢y) =

0,m € M, then there exists n € Na(t), a,(to) = amo(m),

where M is the time of m to the next intersection.

C. Problem Statement

The considered problem can be stated as a long-term
constrained optimization problem, i.e.,

T
1

min lim — E Na(t)], (5)
No (). {1 (8),, (1)} T—>o0 T t=0| ~(0)

where the decision variables are the set of active robots and
their local plans; the objective is to minimize the average
number of active robots; and the constraints are (1)-(4).

III. PROPOSED SOLUTION

The proposed solution is mainly composed of two layers:
the search-based optimization for robot ordering, and the
multi-robot maximum-allowed Martin’s algorithm. In addi-
tion, the online execution, adaptations, and generalizations
of the method are discussed. For convenience, the start time
is set as t = 0, and the ending time of the planning horizon
1S maxX,;em Lm-

A. Search-based Optimization for Robot Ordering

As an essential input to the following component, the
relative ordering among the robots is determined via a
search-based scheme. More specifically, a search tree is
constructed via iterative node selection and expansion. Each
node is a partial ordering of the robots i.e., v = ning - - - ng,
where v, € N is a robot ID. The cost of a node is defined
as a vector:

Cost(v) = (\/\/’A(t)|,7{2% T.,.n,nezj\:/ Abn),

consisting of the number of active robots, the longest
execution time of all active robots, and the total battery
consumption. The root node is an empty sequence. Selection:
the node with the minimum makespan is selected within the
set of existing nodes. Expansion: once a node is selected,
it is expanded by adding an additional robot to the existing
sequence. Consequently, the targets are assigned to the given
sequence of robots via the multi-robot maximum-allowed
Martin’s algorithm (MAM), as described in the sequel. Along
with the sequence of targets, the node cost is also returned.
This node is called feasible if all targets are assigned. Then,
the procedure of selection and expansion is repeated, until the
planning time elapsed or all robot sequences are exhausted
in the search tree. To improve search efficiency, a branch-
and-bound procedure can be applied. The lower bound on
the makespan of each node is computed as the minimum
makespan when all robots are active, while the upper bound
is given by the one-step greedy assignment where each target
is assigned to the nearest robot if feasible.

B. Multi-robot Maximum-allowed Martin’s Algorithm

Given the robot sequence v, Alg. 1 is proposed to de-
termine the active robot set AN, (0) and the optimal task



Algorithm 1: Multi-robot MAM

Algorithm 2: Incremental Martin’s Algorithm

Input: R, S, N, M, robot sequence v
Output: A3 (0) and 7y, Vn € N5(0)

1 Construct G = (V, E) using R, S, N, M
2 Initialize M3 (0) «— @
3 Initialize targets-left set V; « Viu
4 while V; is not empty do
5 Robot n — a. pop()
Vi, Tn, < Incremental-MA(V}, n)
if 7,, # < then
Vi< Vi\Vi:
9 Na(0) — Na(0) U {n}
10 Return N, (0), 7, Vn € N2 (0)

e X &

sequence T, for each active robot. The process begins by
constructing the Time-Varying Node Network (TVNN) in
Line 1, followed by executing Incremental Martin’s Algo-
rithm (IMA) for each robot in sequence in Line 6, which
outputs the maximum set of targets each robot can monitor
along with the optimal 7,,. Finally, the minimum active robot
set is obtained through a greedy approach.

1) Time-Varying Node Network: Robots N, targets M,
and stations S are modeled as nodes in a temporal graph
G = (V,E), where V is the node set and E < V x V is
the edge set. The corresponding node sets are Vy = {7 |
neNLVy={m|meM} and Vg = {5 | s € S},
with ~ distinguishing nodes from entities. To incorporate
intersection constraints from II-B and charging stations,
special nodes are introduced or modified as follows:

Intersection Target Nodes. Intersection constraints intro-
duce independent time constraints beyond (4), requiring a
virtual node "m; at the corresponding intersection for each
target m € M to form V%', The target node set is thus
Viar = Vi v V]i\j}ter. Not all targets require both m € Vi,
and m; € Vimer If yimer < v — xm(0), m € Vi
is unnecessary as intersection monitoring already satisfies
eq. (4). If }i*r exceeds the planning horizon, m; € Viner
is not needed. Decomposition of Stations.Upon reaching
a charging station s, a robot selects its charging duration.
To model this, each station node 5 is decomposed into a
docking node 59 and N4 charging nodes 5; fori = 1,..., N.
The notation § = §; |i=0,..., N is used to denote an
inseparable unit, with V3% and V™ representing all
docking and charging nodes, respectively. The i charging
node supplies b'** -7/ N, providing N, charging options and
enabling automated charge planning. The parameter setting
of TVNN can be found in Appendix, including the time-
varying position and the resource constraints of each node,
the connectivity and the cost C(v,u) € R? of each edge.

2) Incremental Martin’s Algorithm: Given the target left
set V, robot n constructs an incremental sub-TVNN G =
(V™ E™), where V" = VI U V2 U VE with V2 < Vi, and
V& < V. In each iteration, the algorithm selects the optimal
target node and its nearest charging station, adding them to
V™. Target priority is determined by (-, 7) in Line 7, i.e.,

K(0,7) = a1 - d(ps(0), P (0))/vn + az - Ryir,  (6)

U,max

Input: Target left set V;, robot n
Output: V7' 7,

1 Initialize V} «— {7}, Vi — @, VY «— @

2 Initialize Lz, < {}, L < {}

3 lp — (7, Ry,, @)

4 Lpy < Lz v {lo}

5T, «— &

6 while V; is not empty do

7 € « arg mingey, k(7,7)

8 § «— arg mingey, d(2zs, pz(0))

9 | Var—Vauleh Vs <Viuis)

0 | Lep —{}, Loy < {}, Lsp < {}, L < {}
11 Add a new dimension of 1 to le Vipe Ly v Ly
12 Propagate all nodes in L} to ¢ and §

13 A~ MP(G", Ly, L)

14 if A =& then

15 Vi Va(e) Ve < Vi\(s)

16 Break

17 T, — A

18 Return V2!, T,

where ¥ € V" and a;.as € RT are coefficients. The function
k(+,7) is defined by the travel time from 7 to @ and the time
constraint of ¥, ensuring that nodes closer to 7 and with more
urgent time constraints are prioritized.

The IMA follows a label-setting approach, utilizing labels
to explore the graph and identify the Pareto front. Each label
[ is represented as a tuple (7, Ry, €), where  is the node, R
is the resource vector, and ¢ is the predecessor node. Given
the multidimensional nature of R;, the Pareto dominance
rule “<p” is applied for comparison. Labels are managed in
permanent sets L, , and temporary sets L, ; for each node
v € V. The set L, ;, contains Pareto-optimal labels at v, while
L, holds intermediate labels. For convenience, we define
the total permanent and temporary sets as L7 = | Jscyn Lop
and L} = Jyeyn Loy, respectively.

To ensure all target nodes are visited in each plan, we
introduce a binary vector R € R, where Ny = |V, to
indicate the visitation status of each node in V.. Each target
node v € VL is assigned an index iz € {1,2,..., Ny}, with
each dimension of R corresponding to a target node. A value
of 1 denotes an unvisited node, while 0 indicates it has been
visited. The initial resource state is set as RZ = 1p,,. The
cost vectors associated with node resources are given by

C(v,a) = —e;, l(Te V), (7)

where e; € RV is a unit vector with 1 in the ™ dimension
and 0 elsewhere. Since revisiting target nodes is unnecessary,
the resource constraint R > 0 is imposed to expedite the
search process. By concatenating the respective resources
and costs, the final resource and cost are obtained as:

R=-[R'R'|]", €=[c" "] @®)

After preparing new nodes in Lines 10-11, all permanent



nodes are propagated to ¢ and 5, and Martin’s Process (MP),
inspired by Martin’s Algorithm [24], is executed to determine
the optimal task sequence A within the current sub-network
G™. If MP fails to return a feasible solution, the maximal
set of targets monitored by robot n is obtained by removing
the newly added nodes, reverting to the optimal 7,, from the
previous iteration. The MP is detailed in Appendix.

C. Online Execution

1) Online Execution and Adaptations: We define a Re-
planning Horizon 7} to ensure timely corrective actions
when constraints are at risk of being violated. By analytically
computing the exact time at which each target is expected to
violate its constraints, constraint satisfaction can be proac-
tively monitored. If any violation is predicted to occur within
T}, , a replanning process is triggered to maintain feasibility.
The duration of T}, is chosen such that the UAV can reach
any drone on the field, ensuring that necessary interventions
can always be executed in time.

We modify Alg. 1 and Alg. 2 in two aspects. First,
in Line 3, instead of considering the entire set Vi, only
targets that violated constraints in prediction, have completed
monitoring, or were newly generated are included. Second,
when constructing the sub-TVNN, ongoing targets from the
previous allocation are prioritized and incorporated first,
followed by the remaining targets in V;. These modifications
ensure recursive feasibility, as targets in V; must satisfy
R&’é{?x > T}, due to the triggering condition. During online
execution, at each time step ¢ = 0, the UAV follows the
current plan and determines its actions accordingly. Then
the robots will compute the corresponding u,(¢) and move
according to (1), which can be computed through the NMPC
in [25], and the targets move according to their kinematics
and choose the next road randomly at the meantime. This
process continues until a target is predicted to violate its
constraints, at which point the next replanning event is
triggered to ensure feasibility.

2) Complexity Analysis: According to [26], the complex-
ity of IMA is O((Nwr + Ns|VZ|) NuarNier)> Where Nigbel
denotes the number of non-dominated labels at the algo-
rithm’s termination. Since Ny, and |V&| are bounded by
C,, the complexity simplifies to O(N;C2NZ,,). Thus, the
complexity of MAM is O(|Na|NsC2NE,.)-

IV. NUMERICAL EXPERIMENTS

For further validation, extensive numerical simulations
are conducted. The algorithm is implemented in Python3
and tested on a laptop with an Intel Core i7-1280P CPU.
Simulation videos can be found in the supplementary files.

A. System Setup

As shown in Fig. 1 and Fig. 3, our algorithm performs
well in both scenarios. In Fig. 1, 10 targets move within a
50m x 50 m road network with three charging stations. Each
robot follows a linear UAV motion model at a fixed height,
starting from the central drone pad with a fully charged
battery, b5®* = 10.0. There is no limit on the number of
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Fig. 3. Top-Left and Top-Right: Trajectories of 8 robots actively
monitoring 15 targets in the considered scenario at t=84s and t=347s
respectively. Bottom: The action of 8 robots at each time during the
simulation of 400s.

robots at the drone pad. Robots have a maximum speed of
v = 1.5m/s, a battery consumption rate of ~y,, = 0.2 s~k
and a charging rate of 3, = 0.2s~ 1. The monitoring range
in (2) is R, = 3m, and the capacity is uniformly C,, = 6
for all n € N. Targets are initially distributed randomly
along roads and choose their next segments randomly at
intersections, unknown to the robots. Each target moves at
[|Vin|] = 0.2m/s, with a maximum monitoring interval of
Xm = 80s and a monitoring duration of 7 = 2s. The
number of charging nodes is Ny = 5, and the triggering
horizon is Tj, = 30s. The simulation runs for 400 s. In Fig. 3,
the parameters are modified as follows: the road network size
is 100m x 50 m, with two charging stations. The speed is
set to 3m/s, and the number of targets is 15.

B. Results

The final results are shown in Fig. 1 and Fig. 3. In
Fig. 1, each replan employs an average of 3.7 robots, with
a computational cost of 0.063s. The average planning time
per robot n € NV is 0.020's, with 22.6 nodes in each robot’s
planning network. The average number of non-dominated
labels at the end of each planning process is 115.4. Overall,
the average replan interval is 46.13 s, and the average number
of employed robots is 3.5. Each robot n charges for an
average of 109.5 s, accounting for 49.6% of its active period,
indicating a high degree of autonomous charging manage-
ment. According to Fig. 1, in both scenarios, the batteries
of all robots remain positive, and the monitoring intervals of
all targets stay below Y, throughout the simulation. In the
bottom-right figure of Fig. 1, at least one robot is present
in the two rows of each target during every replan, ensuring
that each target remains in the task sequence of at least one
robot at all times.

In the scenario depicted in Fig. 3, each replan employs an
average of 5.5 robots, with an average computational cost of
0.164 s. For each replan, the average planning time per robot
n € N, is 0.024s, with an average of 16.5 nodes in each
robot’s planning network and 111.7 non-dominated labels at
the end of planning. Overall, throughout the simulation, the
average replan interval is 43.11 s, and the average number of
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TABLE I

COMPARISON ANALYSIS RESULTS

Succsess Average Num of Computation

Cases  Methods | g0 Son "I Nodes  Time [s]
Ours 100 2.81 15.62 0.09
NI-MAM 100 2.54 24.30 77.98
M=8 CMA 100 2.40 5228.70 2.60
PeT 36.7 2.90 15.36 0.10
GCF 63.4 3.38 2.34 0.01
Ours 100 23.54 16.61 6.42
NI-MAM - > 20 118.51 >600
M=100 CMA - >20  7.15e52 >600
PeT 69.5 25.18 16.35 6.43
GCF 33.1 41.75 2.40 0.09

*“.” means the result cannot be obtained within the limited time.

employed robots is 6.2. Each robot n spends an average of
143.5s charging, accounting for 47.7% of its active period.

C. Comparisons

To validate the proposed framework (Ours), we con-
duct a quantitative comparison against four baselines, in-
cluding two ablation studies and two common approaches:
(i)Non-incremental Maximum-allowed Martin’s Algorithm
(NI-MAM): Targets are not added incrementally for each
robot but are all included in the sub-TVNN at each step. The
robot returns a sequence maximizing visited targets. (ii) Cen-
tralized Martin’s Algorithm (CMA): All robots are treated
as a single system, where Martin’s algorithm is applied in a
centralized manner [27]. (iii) Periodic Triggering (PeT): The
triggering condition is replaced by periodic triggering. (iv)
Greedy Closest-First (GCF): Targets are assigned greedily,
iteratively allocating each robot to the nearest available target
until no further feasible assignments remain.

As summarized in Table I, the the success rate, average
number of robots, average nodes per replan, and computation
time are compared in the nominal setup of Fig. 1 with
Cp, =5 and varying M. Although our method uses slightly
more robots than (i) and (ii), the average number of nodes
remains stable (always < 20), and the computation time
increases more gradually (6.42s at M = 100). In contrast, (i)
and (ii) show a sharp increase in both metrics as M grows,
demonstrating higher scalability for our method. The PeT
method exhibits similar A/, average nodes, and computation
time as ours but has a lower success rate (below 100%) due

to the absence of active replan time prediction. The GCF
method has smaller average nodes and computation time due
to its direct selection principle, but its success rate is lower
and requires more robots.

D. Scalability Analysis

The scalability of the proposed algorithm is analyzed with
respect to four aspects: the number of targets M, the ratio
between battery consumption rate -y, and charging rate [,
the upper bound of the interval x,,, and the capacity C,,.
The results are summarized in Fig. 4, with the nominal setup
shown in Fig. 1. From (a), (b), and (c), we observe that the
ratio between the total number of targets and the average
number of active robots remains nearly constant, which we
define as fleet efficiency, denoted as 7, and is upper-bounded
by C,,. In (a), we see that as the ratio of battery consumption
to charging rate increases, fleet efficiency decreases from
4.5 to 2.5, as each robot can move less and track fewer
targets under higher consumption-charging ratios. In (b),
when the maximum interval Y,, increases from 30s to
90s, fleet efficiency increases from 2.7 to 6.0, as a larger
Xm allows each robot to track more targets due to the
extended tracking time. From (c), we observe that as C,
increases from 2 to 8, fleet efficiency rises from 1.9 to 5.0,
as more targets can be monitored by each robot. Figure
(d) examines computation time for different ), values as
the number of targets increases. Our method demonstrates
strong scalability, as it takes less than 10s to compute when
M = 200 and C,, = 6. It also highlights that C,, is a crucial
factor influencing computation time, with an exponential
relationship between computation time and C,,.

V. CONCLUSION

This work addresses the long-term monitoring of dynamic
targets in a road network using a fleet of aerial robots
with limited resources. We propose a hierarchical approach
that incrementally assigns targets, optimizes monitoring se-
quences and charging strategies, and adapts online to real-
time constraints. Our method ensures strict adherence to
resource and monitoring constraints while minimizing the
active fleet size. Extensive simulations demonstrate its scal-
ability and effectiveness in deploying a small UAV fleet for
large-scale target monitoring.
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